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UniversitéParis 7-Denis Diderot, 2 Place Jussieu, 75251 Paris Cedex 05, France

Jacques Faraut
Laboratoire d’Analyse Alge´brique, Universite´ Paris 6-Pierre et Marie Curie, 4 Place Jussieu,
75252 Paris Cedex 05, France

Galliano Valent
Laboratoire de Physique The´orique et des Hautes Energies, Unite´ Associe´e au CNRS UMR 7589,
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For the example of the infinite well potential, we point out some paradoxes which are solved by a
careful analysis of what is a truly self-adjoint operator. We then describe the self-adjoint extensions
and their spectra for the momentum and the Hamiltonian operators in different settings. Additional
physical requirements such as parity, time reversal, and positivity are used to restrict the large class
of self-adjoint extensions of the Hamiltonian. ©2001 American Association of Physics Teachers.
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I. INTRODUCTION

In most of the French universities, quantum mechanics is
usually taught in the third-year courses, separately from its
applications to atomic, molecular, and subnuclear physics,
which are dealt with during the fourth year. In such ‘‘first
contact’’ lectures, many mathematical subtleties are neces-
sarily left aside. However, even in the so commonly used
examples of infinitely deep potential wells, overlooking the
mathematical problems leads to contradictions which may be
detected by a careful student and which have to do with a
precise definition of the ‘‘observables,’’ i.e., the self-adjoint
operators.

Of course, experts in the mathematical theory of un-
bounded operators in Hilbert spaces know the correct answer
to these questions, but we think it could be useful to popu-
larize these concepts among the teaching community and the
more mature students of fourth-year courses. In particular,
the role of the boundary conditions that lead to self-adjoint
operators is missed in most of the available textbooks, the
one by Ballentine~Ref. 1, p. 11! being a notable exception as
it includes a discussion of the momentum operator. In this
very review we could find only two references relevant to the
subject. The first one~Ref. 2! considers a particular self-
adjoint extension of the momentum and of the Hamiltonian
for a particle in a box, which is interpreted as describing a
situation with spontaneous symmetry breaking. The second
one ~Ref. 3! mentions the self-adjoint extensions of the
Hamiltonian for a particle in a half-axis and its relevance,
first pointed out by Jackiw,4 to the renormalization of the
two-dimensional delta potential.

The aim of this paper is to emphasize the importance of
the boundary conditions in the proper definition of an opera-
tor and to make available to an audience of physicists basic
results which are not so easily extracted from the large
amount of mathematical literature on the subject.

The paper is organized as follows: In Sec. II we discuss
some paradoxes met in the study of the infinite potential

well. Then, in Sec. III, we present a first analysis of the
boundary conditions for the self-adjoint extensions of the
momentum operator.

In Sec. IV we introduce the concept of deficiency indices
and state von Neumann’s theorem. In Sec. V we apply it to
the self-adjoint extensions of the momentum operator for
which the spectra, the eigenfunctions, and some physical
consequences of these are given. We hope that, despite some
technicalities needed for precision~which can be omitted in a
first reading!, the results are easily accessible. The reader
interested in these technical aspects may consult Refs. 5 and
6.

Then, in Sec. VI, we describe the self-adjoint extensions
of the Hamiltonian operator in various settings~on the real
axis, on the positive semiaxis, and in a box! and in Sec. VII
we use several constraints from physics to reduce the set of
all its possible self-adjoint extensions. In the Appendix we
have gathered some technical details on the extensions of the
momentum operator.

II. THE INFINITE POTENTIAL WELL: PARADOXES

Let us consider the standard problem~see, for example,
Ref. 7, p. 299 or Ref. 8, p. 109! of a particle of massm in a
one-dimensional, infinitely deep, potential well of widthL:

V~x!50, xP] 2
L

2
,1

L

2
[; V~x!5`, uxu>

L

2
. ~1!

Stationary states are obtained through the Schro¨dinger ~ei-
genvalue! equation

Hf~x!5Ef~x!

and the vanishing of their wave functions at both ends. This
means that the action of the Hamiltonian operator for a free
particle, unbounded on the closed interval@2L/2,1L/2#, is
defined by
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H[2
\2

2m
D2,

~2!
D~H !5H f,HfPL2S 2

L

2
,1

L

2D , fS 6
L

2D50J ,

whereD is the differential operatord/dx and D(H) is the
definition domain of the operatorH.

Two series of normalized eigenfunctions of opposite par-
ity are obtained. They vanish outside the well and forx
P@2L/2,1L/2# can be written as follows:

odd ones: Fn~x!5A2

L
sinF2npx

L G ,
En5

\2

2m S 2np

L D 2

,

~3!

even ones: Cn~x!5A2

L
cosF ~2n21!px

L G ,
En85

\2

2m S ~2n21!p

L D 2

,

wheren is a strictly positive integer. The functionsFn(x)
andCn(x) are continuous atx56L/2 where they vanish.

A question of fundamental importance arises: Is the
Hamiltonian operatorH a truly self-adjoint operator? To dis-
cuss this question more thoroughly let us consider a particle
in the state defined by the even, normalized wave function:

C~x!52A30

L5 S x22
L2

4 D , uxu<
L

2
;

~4!
C~x!50, uxu>

L

2
.

It may be expanded9 on the complete basis of eigenfunctions
of H given in ~3!:

C~x!5 (
n51

`

bnCn~x!,

bn5~Cn ,C!5
~21!n21

~2n21!3

8A15

p3 . ~5!

Let us define also, for further use,

C̃~x!52
\2

2m
D2C~x!5

\2

m
A30

L5, 2L/2,x,1L/2,

~6!

and let us begin with some elementary computations: the
mean value of the energy and its mean-square deviation in
state~4!. On the one hand we have

^E&5 (
n51

`

ubnu2En85
480\2

mp4L2 (
n51

`
1

~2n21!4 5
5\2

mL2 , ~7!

but on the other hand

^E&5~C,HC!

5~C,C̃!

52
30\2

mL5 E
2L/2

1L/2Fx22
L2

4 Gdx5
5\2

mL2 5
10

p2 E18 .

These results are coherent. Things are different for the en-
ergy mean-square fluctuation. On the one hand

^E2&5 (
n51

`

ubnu2~En8!2

5
240\4

m2p2L4 (
n51

`
1

~2n21!2 5
30\4

m2L4 , ~8!

leads to

DE[A^E2&2^E&25A5
\2

mL2 , ~9!

and on the other hand

^E2&5~C,H2C!5~C,HC̃!50!!

In order to understand the origin of the paradox, let us come
back to the definitions. The probability of being in the eigen-
statefn of energyen being given byu(fn ,C)u2, one obtains

^E2&5 (
n51

`

en
2u~fn ,C!u25 (

n51

`

en
2~fn ,C!~C,fn!

5 (
n51

`

~Hfn ,C!~C,Hfn!,

where the reality of the eigenvalues of the Hamiltonian has
been used. IfH were self-adjoint, one would obtain with the
help of the closedness relation

^E2&5 (
n51

`

~fn ,HC!~HC,fn!

5~HC,HC!5~C̃,C̃!5
30\4

m2L4 , ~10!

in agreement with the direct calculation~9!. But, if the self-
adjointness ofH were used once more, one would get

^E2&5~HC,HC!5~C,H2C!50, ~11!

which is necessarily wrong. In fact, in~10!, we used~cor-
rectly, as shown by the standard proof using an integration
by parts! the self-adjointness ofH when it acts in the set of
functions that vanish at both end points of the well,

~Hfn ,C!5~fn ,HC!, ~C,Hfn!5~HC,fn!.

In contrast, in~11! the functionC̃ does not belong to that set
and, consequently, in the integration by parts, the integrated
term remains and

~HC,C̃!Þ~C,HC̃!.

These simple calculations show that the problem lies in the

definition of the action of the operatorH on a functionC̃ that
does not vanish at the end points.

To summarize, we came up against the difficulty of the
definition of a self-adjoint operator in a closed interval
@2L/2,1L/2# as an extension of a differential operator
2(\2/2m)D2, a question already solved by mathematicians
in the thirties. Before explaining this theory in a simple man-
ner, in Sec. III we analyze the momentum operator2 i\D.
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III. SELF-ADJOINT EXTENSIONS OF THE
MOMENTUM OPERATOR: A FIRST APPROACH

Let us consider the one-dimensional momentum operator
P52 i\D in a closedx interval. Let us take for domainD
the following space:

D~P!5$f,f8PL2~@0,L# !;f~0!5f~L !50%.

The vanishing of

~c,2 i\Df!2~2 i\Dc,f!

5E
0

L

dxF c̄~x!S 2 i\
df~x!

dx D2S i\
dc̄~x!

dx
Df~x!G

52 i\E
0

L

dx
d

dx
@c̄~x!f~x!#

52 i\@c̄~L !f~L !2c̄~0!f~0!# ~12!

implies thatP is a symmetric operator inD. But P is not a
self-adjoint operator even if its adjointP†52 i\D has the
same formal expressionbut it acts on a different space of
functions. Indeed,

D~P†!5$c,c8PL2~@0,L# !;

no other restriction onc~x!%.

With ~12!, one easily sees that the adjoint of the operator
Pl52 i\D acting on the subspace ofL2(@0,L#) such as

f~L !5lf~0!, where lPC,

is the operatorPl8 where l851/l̄. As a consequence, a
candidate family of self-adjoint extensions of the operator
2 i\D, depending on a complex parameterl[1/l̄, i.e., a
phasel5eiu, uP@0,2p# is:

Puf~x!52 i\Df~x!,
~13!D~Pu!5$f,f8PL2~@0,L# !, f~L !5eiuf~0!%.

Notice that foru50, one recovers the usual periodic bound-
ary conditions.

Conclusion: Given a symmetric differential operator act-
ing on a given functional space, it is not automatically a
self-adjoint operator and may have many self-adjoint exten-
sions.

IV. DEFICIENCY INDICES AND VON NEUMANN’S
THEOREM

Since what follows is more abstract and makes use of
~maximally reduced! mathematical terminology, we would
like to motivate the reader to such an effort. This section is
devoted to the concept of ‘‘deficiency indices’’ for an opera-
tor P. The concept itself is very simple: it is an ordered pair
of positive integers (n1 ,n2). Its knowledge, upon use of an
important theorem due to von Neumann, immediately gives
the answer to the difficult question: How many self-adjoint
extensions does the operatorP admit?

Let us begin with some necessary definitions.
Let us consider a Hilbert spaceH. An operator (A,D(A))

defined onH is said to be densely defined if the subsetD(A)
is dense inH, i.e., that for anycPH one can find inD(A)
a sequencefn which converges in norm toc.

An operator (A,D(A)) is said to beclosed if fn is a
sequence inD(A) such that

lim
n→`

fn5f, lim
n→`

Afn5c,

thenfPD(A) andAf5c.
Let us recall the definition of the adjoint operator of an~in

general not bounded! operatorH with dense domainD(H).
The domainD(H†) is the space of functionsc such that the
linear form

f→~c,Hf!

is continuous for the norm ofH. Hence there exists ac†

PH such that

~c,Hf!5~c†,f!.

One definesH†c5c†. A useful result is that the adjoint of
any densely defined operator is closed, see Ref. 5, p. 80, Vol.
1.

An operator (H,D(H)) is said to besymmetricif for all f,
cPD(H) we have

~Hf,c!5~f,Hc!.

If D(H) is dense, it amounts to saying that (H†,D(H)) is an
extension of (H,D(H)).

The operatorH with dense domainD(H) is said to be
self-adjoint if D(H†)5D(H) andH†5H.

In this section we will assume that (A,D(A)) is densely
defined, symmetric, and closed and let (A†,D(A†)) be its
adjoint.

One defines the deficiency subspacesN6 by

N15$cPD~A†!, A†c5z1c, Im z1.0%,

N25$cPD~A†!, A†c5z2c, Im z2,0%,

with respective dimensionsn1 ,n2 . These are called the de-
ficiency indices of the operatorA and will be denoted by the
ordered pair (n1 ,n2).

The crucial point is thatn1 (n2) is completely indepen-
dent of the choice ofz1 (z2) as far as it lies in the upper
~lower! half complex plane. In practice one takesz15 il and
z252 il with an arbitrary strictly positive constantl
needed for dimensional reasons, and the determination of the
deficiency indices of the operatorA just boils down to the
counting of how many solutions of the equationA†c5zc
have finite norm!

The following theorem, first discovered by Weyl10 in 1910
for second-order differential operators and generalized by
von Neumann11 in 1929, is of paramount importance.

Theorem 1: For an operatorA with deficiency indices
(n1 ,n2) there are three possibilities:

~1! If n15n250, then A is self-adjoint ~in fact this is a
necessary and sufficient condition!.

~2! If n15n25n>1, then A has infinitely many self-
adjoint extensions, parametrized by a unitaryn3n ma-
trix ~i.e., n2 real parameters!.

~3! If n1Þn2 , thenA has no self-adjoint extension.

The concrete application of this theorem to differential
operators still requires some work because one has to solve
three problems:
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~1! Find a domainD(P) for which the formally self-adjoint
operatorP is symmetric and closed.

~2! Compute its adjoint (P†,D(P†)) and determine the de-
ficiency indices ofP.

~3! When they do exist, describe the domains of all the self-
adjoint extensions.

A whole body of theory has been built up to solve these
problems for differential operators and is given in many text-
books~for instance Refs. 5 and 6!.

In Sec. V we describe the results for the simplest case of
the momentum operatorP52 i\D, referring for the proofs
to Ref. 5, Vol. 1, pp. 106–111. The reader should be com-
forted by the simplicity of the determination of the defi-
ciency indices.

V. SELF-ADJOINT EXTENSIONS OF THE
MOMENTUM OPERATOR

Let us apply the previous analysis to the momentum op-
erator P52 i\D, in three different ‘‘physical’’ situations:
first on the whole real axis and in this case we conclude to a
unique self-adjoint extension, second on the positive semi-
axis and in this case there is no self-adjoint extension, and
third in a finite interval@0, L# in which case there are infi-
nitely many self-adjoint extensions, parametrized byU(1),
i.e., a phase. The momentum operator is certainly the sim-
plest differential operator to begin with and it already exhib-
its all the possibilities described in von Neumann’s theorem.
For each physical situation corresponding to position space
being some interval@a, b#, finite or not, the maximal domain
on which the operatorP52 i\D has a well-defined action
will be calledDmax(a,b), and is given in the Appendix. In this
section, we merely apply the previous theorem, postponing
some mathematical details to the Appendix.

Let us consider the Hilbert spaceH5L2(a,b). To use von
Neumann’s theorem we have to determine the functions
c6(x) given by

P†c6~x!52 i\Dc6~x!56 i
\

d
c6~x!.

For dimensional reasons we have introduced the constantd
.0, homogeneous to some length.

An easy integration givesc6(x)5C6e7x/d. Then we
have to discuss the different intervals@a, b#.

A. The operator P on the whole real axis

None of the functionsc6(x) belongs to the Hilbert space
L2(R) and therefore the deficiency indices are~0, 0!. Hence
we conclude that the operator (P,Dmax(R)) is indeed self-
adjoint, in agreement with the heuristic considerations given
in the standard textbooks on quantum mechanics. Moreover,
the spectrum ofP on the real axis is continuous, with no
eigenvalues.

B. The operator P on the positive semi-axis

Among the functionsc6(x), only c1 belongs toL2(0,
1`). We conclude that the deficiency indices are~1, 0! and
therefore, by the von Neumann theorem, thatP has no self-
adjoint extension. This is a fairly surprising conclusion, since
it implies that the momentum is not a measurable quantity in
that situation!

C. The operator P on a finite interval

Since we are working on a finite interval, bothc6(x)
5C6e7x/d belong toL2(0,L) and the deficiency indices are
~1, 1!.

From von Neumann’s theorem, we know that the self-
adjoint extensions are parametrized byU(1), i.e., a phase
eiu, in agreement with the result of Sec. III. Denoting these
extensions byPu5(P,Du), they are given by

Du5$cPDmax~0,L !, c~L !5eiuc~0!%, uP@0,2p#.
~14!

Moreover, the spectra are purely discrete. Using the
boundary condition~14!, the eigenvalues and eigenfunctions
are easily shown to be

Pufn~x,u!5
2p\

L
nfn~x,u!,

n5n1
u

2p
, n50,61,62,...,

~15!

fn~x,u!5
1

AL
expF2ipn

x

LG , ~fm ,fn!5dmn .

As the phaseu appears in the eigenfunctions any measure-
ment of the momentum of a given system should, in general,
depend on it. To display this, let us go back to the state~4!.
After a translation, we are left with the wave function

C~x!5A30

L5 x~L2x!.

Its eigenfunction expansion is

C~x!5 (
n52`

n51`

cn~u!fn~x,u!,

with coefficients

cn~u!52
A30

2p2n2 Fcos~u/2!2
sin~u/2!

pn Ge2 iu/2

for uÞ0, ~16!

and

c05
A30

6
, cn52

A30

2p2n2 , n51,2,... for u50.

~17!

So the probability of finding the particle with a momentum
2pn\/L, being equal toucn(u)u2, is really u dependent. Of
course one would like to have a physical argument which
gives some preferred value ofu.

Let us conclude with the following remarks.
~1! The textbooks which do study the momentum operator

in a box ~Ref. 1 and Ref. 12, Vol. 2, p. 1202! usually con-
sider ~using physical arguments! only the self-adjoint exten-
sion corresponding to the periodic boundary condition~i.e.,
u50! which is certainly the simplest~but still arbitrary!
choice. The antiperiodic boundary condition~i.e., u5p! has
been considered by Capri in Ref. 2.

~2! For a particle in a box, it is often argued that the
‘‘physical’’ wave function should vanish on the wallsx50
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and x5L, ensuring that the position probability vanishes
continuously forx<0 and forx>L. One should realize that
the continuity of the measurable quantity

Pr~0<x<u!5E
0

u

uf~x!u2dx, uP@0,L#

is ensured as soon as the integral*0
Luf(x)u2 dx converges

and does not require any continuity property off(x). Spe-
cializing this remark to the eigenfunctions ofPu , we observe
that ufn(x,u)u2 does not vanish continuously atx50 but
nevertheless the physical quantity

Pr~0<x<u!5
u

L

vanishes continuously, as it should, foru→0.
~3! The existence of normalizable eigenfunctions of the

momentum operator has an important consequence: The
Heisenberg inequalityDXDP>\/2 no longer holds. Indeed,
for the statefn(x,u) given in relation~15!, one hasDP
50 andDX5L/2. On the contrary, on the whole real axis
the spectrum is fully continuous~no normalizable eigenfunc-
tions!, and the momentum probabilities are related to the
Fourier transformed wave function. As the widths inx space
and in p space are inversely proportional, the Heisenberg
inequality follows.

~4! If one identifies the variablex with the angular variable
wP@0,2p# of polar coordinates, then the angular momentum
is Lz52 i\(d/dw). The previous remark shows that the in-
equality DwDLz>\/2 can be violated, even by wave func-
tions periodic in the anglew.

VI. SELF-ADJOINT EXTENSIONS OF THE
HAMILTONIAN

In the same setting as in Sec. V, we consider now the
Hamiltonian operatorH52D2. We work in the Hilbert
spaceL2(a,b). The maximal domain in which the operator
D2 is defined will again be calledDmax(a,b). To compute the
deficiency indices we solve

2D2f~x!56 ik0
2f~x!, k0.0, ~18!

and get

f65a6ek6x1b6e2k6x, k65
~17 i !

&
k0 . ~19!

A. The Hamiltonian on the whole real axis

Let us consider a free particle moving in a one-
dimensional space. The Hilbert space isH5L2(R), which
implies f6¹H and the deficiency indices~0,0!. It follows
that on the real axis there is auniqueself-adjoint extension
of the Hamiltonian, with a fully continuous spectrum, in full
agreement with the physicist’s understanding of this case.

B. The Hamiltonian on the positive semi-axis

Let us now consider a free particle in front of an infinitely
high wall for x,0. In the Hilbert spaceH5L2(0,1`), the
solutions to Eq.~18! are given by

f65b6e2k0x/&e6 ik0x/&,

leading to the deficiency indices~1,1!, and therefore to infi-
nitely many self-adjoint extensions parametrized byU(1).

The corresponding boundary conditions are

~f8~0!2 if~0!!5eia~f8~0!1 if~0!!, aP@0,2p#,

which are equivalent to

f~0!5lf8~0!, l52tan~a/2!, lPRø$`%, ~20!

see Ref. 5, Vol. 2, pp. 187, 204. The boundary condition
f8(0)50 corresponds tol5`. Physicists use the particular
extension withl50; see, for instance, Ref. 7, p. 328 and
Ref. 13, p. 33.

Let us now discuss the energy spectra of a particle con-
fined in the regionx>0. When the particle energyE is posi-
tive, we can compute the reflection coefficient for this infi-
nitely high barrier in order to compare the predictions given
by the different extensions. The wave function is

f~x!5Ae2 ikx1Beikx, E5
\2k2

2m
, k.0. ~21!

Let us define the reflection amplitude and reflection probabil-
ity by

r ~k!5
A

B
, R~k!5ur ~k!u2.

Imposing the boundary condition~20! we get

r ~k!52
11 ilk

12 ilk
⇒R51. ~22!

Remarkably enough the physical content~i.e., R51!! of all
the extensions is the same: The wall acts as a perfect reflec-
tor.

This is not quite true for the bound states

E52
\2r2

2m
, r.0, f~x!5Ae2rx,

for which ~20! implies (11lr)A50. There will be a bound
state withr521/l only for l,0 and different from̀ . Its
energy and normalized wave function are

E52
\2

2ml2 , l,0, f~x!5A 2

ulu
e2x/ulu. ~23!

As far as an infinitely high wall is feasible experimentally,
the existence~or nonexistence! of this negative energy will
act as a selector of some self-adjoint extensions.

If experiment could rule out the negative energy state, or if
one is reluctant to accept negative energies for the Hamil-
tonian, there are still many possible extensions, withl>0 or
l5`.

C. The Hamiltonian on a finite interval

This last case corresponds to a particle in a box:x
P@0,L#. From a mathematical standpoint the situation is
quite similar to the one already experienced with the momen-
tum operator in Sec. V C, but to our knowledge, it did not
appear before in the literature. So we give some details in the
main text.

One starts from the operator (H,D0(H)) such that
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D0~H !5$fPDmax~0,L ! and

f~0!5f~L !5f8~0!5f8~L !50%.

It is densely defined and closed, with adjoint

H†5H, D~H†!5Dmax~0,L !.

Since all the solutions of Eq.~18! belong toL2(0,L), the
deficiency indices are now~2,2! and the self-adjoint exten-
sions are parametrized by aU(2) matrix.

To describe these self-adjoint extensions, it is natural to
introduce the sesquilinear form, forf andc in Dmax(0,L),

B~f,c!5
1

2i
~~H†f,c!2~f,H†c!!, ~24!

which depends only on the boundary values off and c.
Specializing toc5f we have

B~f,f!5
1

2i
~f8~L !f~L !2f~L !f8~L !

2f8~0!f~0!1f~0!f8~0!!. ~25!

The identity

1

2i
~xȳ2 x̄y!5

1

4
~ ux1 iy u22ux2 iy u2!, ~26!

applied to x5Lf8(L), y5f(L), and x5Lf8(0),
y5f(0) brings relation~25! to

4LB~f,f!5uLf8~0!2 if~0!u21uLf8~L !1 if~L !u2

2uLf8~0!1 if~0!u2

2uLf8~L !2 if~L !u2. ~27!

The domain of a self-adjoint extension is a maximal sub-
space ofDmax(0,L) on which the formB(f,f) vanishes
identically. These self-adjoint extensions are parametrized by
a unitary matrixU, and will be denotedHU5(H,D(U)), in
which D(U) is the space of functionsf in Dmax(0,L) satis-
fying the following boundary conditions:

S Lf8~0!2 if~0!

Lf8~L !1 if~L ! D5US Lf8~0!1 if~0!

Lf8~L !2 if~L ! D . ~28!

Notice the arbitrariness in the choice of the ordering of the
coordinatesLf8(0)6 if(0) andLf8(L)7 if(L). The cru-
cial observation is that whatever the choice of coordinates is,
the arbitrariness of the self-adjoint extensions remains de-
scribed by aU(2) matrix.

These boundary conditions describe all the self-adjoint ex-
tensionsHU5(H,D(U)) of a particle in a box. Moreover,
thanks to the useful theorem, proved in Ref. 6, Vol. 2, p. 90,
stating that for a differential operator of ordern with defi-
ciency indices (n,n), all of its self-adjoint extensions have a
discrete spectrum, we know that all the spectra of theHU are
fully discrete. Leaving the details to the reader, we only give
the results.

Let us parametrize the unitary matrixU as:

U5eicM , detM51, ⇒detU5e2ic, cP@0,p#,
~29!

whereM is an element ofSU(2), i.e., a unitary matrix of
determinant 1. The range ofc is restricted top instead of 2p
because the couples (c,M ) and (c1p,2M ) give rise to the

same unitary matrixU. Notice also that it follows that the
pointsc50 andc5p are to be identified.

In what follows we will use the Pauli matrices

t15S 0 1

1 0D , t25S 0 2 i

i 0 D , t35S 1 0

0 21D ,

and the notation

n•t5n1t11n2t21n3t3 .

We found it convenient to use the coordinatesm
5(m0 ,m) such that

M5S m02 im3 2m22 im1

m22 im1 m01 im3
D 5m0I 2 im"t, ~30!

constrained by

m0
21m"m51⇔mPS3. ~31!

Then, starting from the boundary conditions~28!, we ob-
tain the spectra for the Hamiltonian in a box.

~a! E5s2/L2.0:

2s@sinc coss2m1#5sins@cosc~s211!2m0~s221!#.

~b! E50: s→0 ⇔
2 sinc2cosc52m11m0 . ~32!

~c! E52r 2/L2,0: s5 ir ⇔
2r @sinc coshr 2m1#5sinhr @2cosc~r 221!

1m0~r 211!#.

Remarks:
~1! The eigenvalue equations are independent of the pa-

rameters (m2 ,m3). As shown in Ref. 14, this follows from
their invariance under the transformation

M→M 85e2ut1/2iMe1ut1/2i .

Let us point out that this invariance is specific of the spectra,
not of the eigenfunctions.

~2! The existence of negative energies seems rather sur-
prising sinceP252D2 is a formally positive operator. That
this is not generally true can be seen by computing

~f,Hf!2~Pf,Pf!5f̄~0!f8~0!2f̄~L !f8~L !,

fPDU .

If the right-hand side of this relation is positive, the spectrum
will be positive, an issue which depends on the extensionHU
considered~see Sec. VII C!.

~3! The discrete spectrasn can be classified as ‘‘simple’’
when their analytic form can be given, or ‘‘generic’’ when
this is not the case. The detailed analysis of the spectra may
be found in Ref. 14.

VII. RESTRICTIONS FROM PHYSICS ON THE
SELF-ADJOINT EXTENSIONS

In Sec. VI we have described all the possible self-adjoint
extensions of the operatorHU as they follow from operator
theory. Now we examine which extensions are likely to play
an interesting role according to arguments from physics.
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A. Extensions preserving time reversal

Let C(x,t) be a solution of the Schro¨dinger equation

i\
]C

]t
~x,t !52

\2

2m

]2C

]x2 ~x,t ! ~33!

inside the box. The time reversal invariance of this equation
means that ifC(x,t) is a solution of~33!, thenC̄(x,t) is also
a solution. If we consider a stationary state of definite energy
E with the wave function

C~x,t !5fE~x!expS 2 i
Et

\ D ,

the previous statement implies thatfE(x) andf̄E(x) are two
eigenfunctions of the HamiltonianH with the same eigen-
value E. One can therefore choosereal eigenfunctions by
taking the linear combinationfE(x)1f̄E(x).

The shortcoming in this argument is that the boundary
conditions~28! do not leadnecessarilyto real eigenfunctions
fE(x). Among all of the self-adjoint extensions of the
Hamiltonian only some subclass will have real eigenfunc-
tions. These extensions will be said to be time reversal in-
variant.

To determine all of these extensions, we merely observe
that, using the notations

c6~x!5Lf8~x!6 if~x!,

the reality off(x) implies c̄6(x)5c7(x). Taking the com-
plex conjugate of relation~28! gives

S c1~0!

c2~L ! D5ŪS c2~0!

c1~L ! D5ŪUS c1~0!

c2~L ! D . ~34!

Sincec1(0) andc2(L) cannot vanish simultaneously, we
conclude to

det~I2ŪU !50. ~35!

Using for U the coordinates given by~30!, easy computa-
tions givem250 and, correspondingly, the matrix

U5eicS m02 im3 2 im1

2 im1 m01 im3
D

with cP@0,p# and m0
21m1

21m3
251. ~36!

B. Extensions preserving parity

The potentialV(x), vanishing inside the box, is symmetric
with respect to the pointx5L/2. To make this symmetry
explicit we shift the coordinatex to

u5
x

L
2

1

2
, uPF2

1

2
,1

1

2G ,
and define

Ṽ~u!5V~x!, f̃E~u!5fE~x!.

In the new variableu, the potential is even:Ṽ(2u)5Ṽ(u).

It follows that, for a given energy, the eigenfunctionsf̃E(u)

and f̃E(2u) are solutions of the same differential equation
and we can choose linear combinations of definite parity
f̃E(u)6f̃E(2u).

As was already the case in the discussion of time reversal
invariance, this argument is wrong since it overlooks the
possibility for the boundary conditions~28! to break parity.
Note that this point is often forgotten in quantum mechanics
textbooks: There, one generally finds that, as soon as the
potential is symmetric, the solution of the Schro¨dinger equa-
tion is of definite parity. It should be clear that the boundary
conditions are essential. A good example to think about is
the finite square well. The wave functions of its bound states
are subject to the boundary conditions* uf(x)u2dx,`. As
this condition is symmetric, the wave functions do have a
definite parity. This is not the case for the diffusion eigen-
functions, for which one has an incoming and reflected wave
for x→2`, while for x→1` one has only a transmitted
wave. In this second case the symmetry betweenx and2x is
broken by the very conditions which characterize a diffusion
experiment.

We will therefore define parity preserving extensions of
the HamiltonianHU as the ones for which the eigenfunctions

f̃E(u) verify

uf̃E~2u!u25uf̃E~u!u2. ~37!

Here one can show14 that all parity preserving extensions are
given bym350 and so correspond to the matrix

U5eicS m0 2m22 im1

m22 im1 m0
D , cP@0,p#,

~38!
m0

21m1
21m2

251.

C. Extensions preserving positivity

One of the most surprising facts for a physicist is the ap-
pearance of extensions with negative energies~see Secs.
VI B and VI C!.

From a theorem proved in Ref. 6~theorem 16, Vol. 2, p.
44! one knows that only a finite number of negative energies
can appear and that the sum of their multiplicities is at most
2. However, the determination of theU matrices with no
negative eigenvalues involves lengthy graphical discussions
of Eq. ~32!, which are fairly tedious.

A partial answer to this problem is offered by an interest-
ing theorem due to von Neumann~see Ref. 5, p. 97!. It states
that if A is densely defined and closed, thenA†A is self-
adjoint ~and obviously positive!.

Let us apply this result to the operator (P
52 iD ,D0(P)) defined in Sec. V C, whose adjoint was
(P,Dmax(0,L)). It follows that the operator

~P2,D1~P2!!,

D1~P2!5$fPDmax~0,L ! with f~0!5f~L !50%,

will be self-adjoint. It corresponds to the extension withU
5I.

If we take for the operator (P,Dmax(0,L)), with adjoint
(P,D0(P)), we are led to

~P2,D2~P2!!,

D2~P2!5$fPDmax~0,L ! with f8~0!5f8~L !50%,

a self-adjoint extension corresponding toU52I.
As a last example, we may start from (P,Du), in which

case von Neumann’s theorem gives the self-adjoint extension
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~P2,D3~P2!!,

D3~P2!5$fPDmax~0,L ! with f~L !5eiuf~0!,

f8~L !5eiuf8~0!%,

corresponding to the matrix

U5S 0 e2 iu

eiu 0 D , uP@0,2p#.

It can be shown14 that for this choice of the matrixU, the
operators (P2,DU) and (P,Du) have the same eigenfunc-
tions. These extensions, (P2,DU), are really the squares of
the ones of the momentum operator (P,Du).

D. The infinite well as a limit of the finite one

Let us consider the standard problem of a particle of mass
m in a one-dimensional potential well of widthL and depth
V0 :

V~x!50, xP]0,L@ ; V~x!5V0.0, x¹#0,L@ . ~39!

A standard computation gives the bound state wave func-
tions

x<0: fn~x!5dnerx, r25
2m~V02E!

\2 ,

x>L: fn~x!56dne2r~x2L !, ~40!

0<x<L: fn~x!5dnFcoskx1
r

k
sinkxG , k25

2mE

\2

with

dn5
k

r
A2

L

1

A~112/~rL !!~11k2/r2!
.

The positive integern labels the~finite for a given value of
V0! family of solutions of the transcendental equation:

tan~kL!5
2kr

k22r2

and the6 corresponds to the~opposite! parity of the station-
ary staten, and to

cos~kL!1
r

k
sin~kL!561.

WhenV0 is large, one finds for the spectrum

S r.`, v05A2mV0L2

\2 @1, k fixedD
knL.np~122/v0!, En.En

`~124/v0!, ~41!

where theEn
`’s are the infinite well energy levels~3!, and for

the stationary states:

fn~x<0!;A2

LS np

v0
Dexp2v0ux/Lu;0,

fn~x>L !;6A2

LS np

v0
Dexp2v0~x/L21!;0, ~42!

fn~0<x<L !;A2/LFsinnp
x

L
1S np

v0
D

3S cosnp
x

L
2

1

np
sinnp

x

L D G .
In that ~fixed energy! infinite limit of the finite well, we

see that the standard boundary conditionsf(0)5f(L)50
are recovered. One could have considered a nonsymmetric
potential well such thatV(x)5V0 for x,0 andV(x)5V1

for x.L with V0ÞV1 . Taking the limitsV0→` and V1

→` independently leads to the same conclusions as for the
symmetric caseV05V1 considered here.

This result is hardly a surprise since for fixedV0 we im-
pose from the beginning thecontinuity of the wave function
and its first derivativeat x50 andx5L. The wave function
in the classically forbidden region~x,0 andx.L! is expo-
nentially decreasing and is damped to zero in theV0→`
limit. Combined with the continuity offn(x) at the points
x50 andx5L this leads tof(0)5f(L)50. ~Notice that in
that limit the continuity of the first derivative of the wave
function is lost.!

In many textbooks~Ref. 12, Vol. 1, p. 78, Ref. 7, exercise
6.7, p. 396!, this limiting process is argued to select the
‘‘right’’ boundary conditions for the self-adjoint extension of
the Hamiltonian. In the same spirit, it would be tempting to
consider the semi-axis case as a limit of a step potential. This
selects uniquely the self-adjoint extension of the Hamiltonian
such thatf(0)50 ~Sec. VI B!. However, for any finite
height, the momentumPx has a unique self-adjoint exten-
sion, while for an infinite height,Px has no self-adjoint ex-
tension at all~see Sec. V B!!

This discussion shows that an infinite potential cannot be
simply described as the limit of a finite one.

VIII. CONCLUDING REMARKS

The aim of this article was twofold: first to popularize the
theory of self-adjoint extensions of operators among people
learning and~or! teaching quantum mechanics and second to
give concrete examples for some simple potentials encoun-
tered in quantum mechanics textbooks.

Further work is obviously needed. For instance the new
spectra for a particle in a box could lead to different low
temperature behaviors of the specific heat, following the
lines of Refs. 15 and 16. Similarly, the boundary effects
computed in Ref. 17 should be examined anew.

Certainly the examples considered here are simplified
models devised to describe physical phenomena. This pro-
cess of modeling is at the heart of the physicist’s work. Once
some simplified model is chosen and becomes part of the
teaching activity one should explain the subtleties possibly
hidden in it.

Our hope is that our analysis will be extended to the dif-
ferential operators acting in three-dimensional space which
could lead to more realistic physical situations and bring to
light new phenomena: These developments could initiate the
‘‘physics of self-adjoint extensions.’’

Moreover, as previously seen, an infinite potential cannot
be simply described as the limit of a finite one. This enforces
interest in the large class of self-adjoint extensions described
in this work: They deserve further study since they are all on
an equal footing with respect to the principles of quantum
mechanics.

Last, but not least, let us mention other difficult problems
which are not thoroughly dealt with in the standard teaching
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of quantum mechanics: the definition of higher powers of
operators~to say nothing of their exponential!! and their
commutators. This item was encountered in Sec. II, where it
was observed thatH2 is not the square of the operatorH. By
contrast, in Sec. VII C, we have exhibited a specific exten-
sion of P2 which is really the square of the extensionPu
of P.

APPENDIX: SELF-ADJOINT EXTENSIONS OF THE
MOMENTUM OPERATOR

Let us consider the Hilbert spaceH5L2(a,b). The maxi-
mal domain on which the operatorP52 i\D has a well-
defined action has been calledDmax(a,b) in Sec. V. It is the
linear space of functionsc(x) constrained by the following:

~1! c(x) is absolutely continuous18 on @a,b#.
~2! c(x) andc8(x) belong toL2(a,b).

It is useful to introduce the quantity

B~c,f![
1

2i
@~Pc,f!2~c,Pf!#

5
\

2
@c̄~b!f~b!2c̄~a!f~a!#. ~43!

1. The operator P on the whole real axis

The Hilbert space isH5L2(R) and the maximal domain
of P is Dmax(R).

One can prove that for anyc in this maximal domain, one
has

lim
x→6`

c~x!50.

Note that this statement would not be true under the single
hypothesiscPL2(R). The symmetry ofP is then, forf, c
PDmax(R), an obvious consequence of~43!. To prove that
(P,Dmax(R)) is indeed self-adjoint, one should show that, if
fPL2(R) is such that

;cPDmax~R!,

U E
2`

1`

c8~x!f̄~x!dxU<CS E
2`

1`

ucu2dxD 1/2

,

then f belongs toDmax(R). But it is easier to check this
using von Neumann’s theorem, which was done in Sec. V A.
We have proven that the deficiency indices are~0, 0! and
concluded that the operator (P,Dmax(R)) is theuniqueself-
adjoint extension ofD.

2. The operator P on the positive semi-axis

The Hilbert space isH5L2(0,1`) and we take as do-
main

D0~P!5$cPDmax~0,1`! and c~0!50%. ~44!

As in the previous subsection, one can prove that
limx→1` c(x)50. Then the symmetry of the operatorP on
D0(P) follows again from relation~43!.

The adjoint of (P,D0(P)) is given by

~P†5P, D~P†!5Dmax~0,1`!!.

The double adjoint is simply

P††5P, D~P††!5D0~P!,

which shows that (P,D0(P)) is closed.
However, as we checked in Sec. V B, the deficiency indi-

ces are~1, 0! and therefore, by the von Neumann theorem,
(P,D(P)) has no self-adjoint extension.

3. The operator P on a finite interval

The Hilbert space is nowH5L2(0,L) and we take

P52 i\D,

D0~P!5$cPDmax~0,L !, c~0!5c~L !50%.

The symmetry ofP on D0(P) follows again from relation
~43!. Its adjoint is

~P†5P, D~P†!5Dmax~0,L !!.

Let us notice that the adjoint of (P,D(P†)) is (P,D0(P)),
which implies its closedness.

In Sec. V C, we have obtained the deficiency indices~1, 1!
and, from von Neumann’s theorem, we know that the self-
adjoint extensions are parametrized byU(1), i.e., a phase
eiu.

4. Remarks

~1! In all cases we observe that the adjoint (P†,D(P†))
has for domainD(P†)5Dmax, which is the largest domain in
H in which 2 i\D is defined. It follows that the actual com-
putation of the deficiency indices is always an easy task.

~2! Let us observe that for symmetric operators one has the
hierarchy

~P,D~P!!,~P†,D~P†!!,

which means that the adjoint is the ‘‘biggest.’’ When self-
adjoint extensions (P,Du) do exist they must lie in the in-
between, according to the scheme

~P,D0~P!!,~P,Du!,~P†,D~P†!!.

~3! For further use, let us point out the useful theorem,
proved in Ref. 6~Vol. 2, p. 90!, stating that for a differential
operator of ordern with deficiency indices~n,n! all of its
self-adjoint extensions have a discrete spectrum.
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FARADAY’S LAW

Out of the Boulder Dam come a few dozen rods of copper—long, long, long rods of copper
perhaps the thickness of your wrist that go for hundreds of miles in all directions. Small rods of
copper carrying the power of a giant river. Then the rods are split to make more rods . . .then to
more transformers . . .sometimes to great generators which recreate the current in another
form . . .sometimes to engines turning for big industrial purposes . . . to more transformers
. . . then more splitting and spreading . . .until finally the river is spread throughout the whole
city—turning motors, making heat, making light, working gadgetry. The miracle of hot lights from
cold water over 600 miles away—all done with specially arranged pieces of copper and iron.
Large motors for rolling steel, or tiny motors for a dentist’s drill. Thousands of little wheels,
turning in response to the turning of the big wheel at Boulder Dam. Stop the big wheel, and all the
wheels stop; the lights go out. They really are connected. . . .

All this is possible because of carefully designed arrangements of copper and iron—efficiently
created magnetic fields . . .blocks of rotating iron six feet in diameter whirling with clearances of
1/16 of an inch . . .careful proportions of copper for the optimum efficiency . . . strange shapes all
serving a purpose, like the curve of the dam.

Richard P. Feynman, Robert B. Leighton, and Matthew Sands,The Feynman Lectures on Physics, Vol. II, The Electro-
magnetic Field~Addison-Wesley, Reading, Massachusetts, 1964!, p. 16-9.
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