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For the example of the infinite well potential, we point out some paradoxes which are solved by a
careful analysis of what is a truly self-adjoint operator. We then describe the self-adjoint extensions
and their spectra for the momentum and the Hamiltonian operators in different settings. Additional
physical requirements such as parity, time reversal, and positivity are used to restrict the large class
of self-adjoint extensions of the Hamiltonian. @01 American Association of Physics Teachers.
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[. INTRODUCTION well. Then, in Sec. lll, we present a first analysis of the
boundary conditions for the self-adjoint extensions of the

In most of the French universities, qguantum mechanics i§nomentum operator. o o
usually taught in the third-year courses, separately from its [N Sec. IV we introduce the concept of deficiency indices
applications to atomic, molecular, and subnuclear physics2nd state von Neumann's theorem. In Sec. V we apply it to
which are dealt with during the fourth year. In such “first the self-adjoint extensions of the momentum operator for

contact” lectures, many mathematical subtleties are neceé’ygr';gqtggnggg(gg?ﬁggga?;gg{yggcwgi’osg?h:?rggsgEZSS'S?TLE
sarily left as'.de.' !—Iowever, even in the so common_ly usecfechnicalities needed for precisionhich can be omitted in a
examples of infinitely deep potential wells, overlooking thefirst reading, the results are easily accessible. The reader

mathematical problems leads to contradictions which may bgyerested in these technical aspects may consult Refs. 5 and
detected by a careful student and which have to do with
precise definition of the “observables,” i.e., the self-adjoint .Then, in Sec. VI, we describe the self-adjoint extensions
operators. of the Hamiltonian operator in various settin@ the real

Of course, experts in the mathematical theory of un-axis, on the positive semiaxis, and in a baxd in Sec. VI
bounded operators in Hilbert spaces know the correct answeve use several constraints from physics to reduce the set of
to these questions, but we think it could be useful to popuall its possible self-adjoint extensions. In the Appendix we
larize these concepts among the teaching community and theve gathered some technical details on the extensions of the
more mature students of fourth-year courses. In particulamnomentum operator.
the role of the boundary conditions that lead to self-adjoint
operators is missed in most of the available textbooks, the

one by BallentindRef. 1, p. 11 being a notable exception as e |\\FINITE POTENTIAL WELL: PARADOXES
it includes a discussion of the momentum operator. In this

very review we could find only two references relevantto the | ot us consider the standard probldsee, for example

subject. The first onéRef. 2 considers a particular self- Ref, 7, p. 299 or Ref. 8, p. 109f a particle of massnin a
adjoint extension of the momentum and of the Hamiltonianpne-dimensional, infinitely deep, potential well of width

for a particle in a box, which is interpreted as describing a
situation with spontaneous symmetry breaking. The second L L L
one (Ref. 3 mentions the self-adjoint extensions of the  V(X)=0, XE]_§'+§[; V(x) =0, |X|>§- (1)
Hamiltonian for a particle in a half-axis and its relevance,
first pointed out by Jackif,to the renormalization of the Stationary states are obtained through the Stihger (ei-
two-dimensional delta potential. envalug equation
The aim of this paper is to emphasize the importance o?
the boundary conditions in the proper definition of an opera-  H ¢(x)=E¢(x)
tor and to make available to an audience of physicists basic
results which are not so easily extracted from the largeand the vanishing of their wave functions at both enitss
amount of mathematical literature on the subject. means that the action of the Hamiltonian operator for a free
The paper is organized as follows: In Sec. Il we discusgarticle, unbounded on the closed interjalL/2,+L/2], is
some paradoxes met in the study of the infinite potentiatefined by
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%2 These results are coherent. Things are different for the en-

H=— ﬁDZ, ergy mean-square fluctuation. On the one hand
2) *
L L L ( 2\ _ 2,212
D(H):[¢7H¢E£2(—§,+§ , ¢ i§)=0], (E >—n§=:1|bn| (Ep)
whereD is the differential operatod/dx and D(H) is the 24004 1 30n4
definition domain of the operatdt. =22 nzl 2n—17 meL* (8)

Two series of normalized eigenfunctions of opposite par-
ity are obtained. They vanish outside the well and %or |eads to
e[ —L/2,+L/2] can be written as follows:

2
odd ones ®,(x)= \/Esin

#? (2n77)2

2nax
L

AE= BT~ VB ©

and on the other hand

= oml T

2 (2n—1)mx
even ones ¥V, (x)= ECO 0

, h2[(2n-1)m)?
" 2m L :

wheren is a strictly positive integer. The functionB,(x)
andW¥,(x) are continuous at= *L/2 where they vanish. ”

A question of fundamental importance arises: Is the = Z (Hon , W) (V,Hey),
Hamiltonian operatoH a truly self-adjoint operator? To dis- -t

cuss this question more thoroughly let us consider a particlg/here the reality of the eigenvalues of the Hamiltonian has
in the state defined by the even, normalized wave functionheen used. IH were self-adjoint, one would obtain with the

(E?)=(V,H?¥)=(¥,HP)=0!

() In order to understand the origin of the paradox, let us come
back to the definitions. The probability of being in the eigen-
state,, of energye, being given byl (¢, ,¥)|?, one obtains

[’

(E%= 2 €tl(¢n,¥)*= 2 e(bn, W)V, 60)

n=1

30 L2 L help of the closedness relation
V(X)=—\ 5| X2~ —|, X<=; .
L 4 2 5
. @) (E?)= 2 (¢, HY)(HV, )
Y(x)=0, |x|>§. Y
It may be expandedbn the complete basis of eigenfunctions =(HY,HY) =¥, %)= m’L4’ (10

of H given in (3):
g & in agreement with the direct calculatig8). But, if the self-
adjointness oH were used once more, one would get

T (x)= 2, by¥(x),
n=1 (E®)=(HW,HW)=(¥,H>¥)=0, (11)

b= (¥, W)= (—1)" ! 815 5) which is necessarily wrong. In fact, if10), we used(cor-
n n (2n—-1)° = - rectly, as shown by the standard proof using an integration
) by partg the self-adjointness dfl when it acts in the set of
Let us define also, for further use, functions that vanish at both end points of the well,

~ h? #% /30
V()= 5-D2W(0="— /{5 —LR<X<+LI2, (Hgn W) =(dn HY), (W, Hoy)=(HV ).
(6) In contrast, in(11) the function does not belong to that set

and let us begin with some elementary computations: th@nd, consequently, in the integration by parts, the integrated
mean value of the energy and its mean-square deviation i#¢rm remains and

state(4). On the one hand we have ~ ~

- . (HV, W) # (¥, HWP).
B sz_480}122 1 5h* . , . o

( >_n:1 |by A2 & 2n-1)% mL2 (7) These simple calculations show that the problem lies in the

definition of the action of the operatbron a functionV that

but on the other hand does not vanish at the end points.
(E)=(¥,HP) To_summarize, we came up agains_t the difficulty of the
definition of a self-adjoint operator in a closed interval
=(¥, ) [—-L/2,+L/2] as an extension of a differential operator
—(#2/2m)D?, a question already solved by mathematicians
__ 300 f“lz N L_2 Y= 5h? _ 10Er in (the thir)ties. Be?‘ore explaining)t/his theoryyin a simple man-
mL> J 1 4 mL2 g2t ner, in Sec. Ill we analyze the momentum operatariD.
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[ll. SELF-ADJOINT EXTENSIONS OF THE An operator A,D(A)) is said to beclosedif ¢, is a

MOMENTUM OPERATOR: A FIRST APPROACH sequence irD(A) such that
Let us consider the one-dimensional momentum operator  lim ¢,=¢, |lim A¢,=y,
P=—i4AD in a closedx interval. Let us take for domait® n—e n—ee
the following space: then ¢ e D(A) andAd= y.
D(P)={¢,¢" € LX([0L]);$(0)=¢(L)=0}. Let us recall the definition of the adjoint operator of(@n

general not boundgdperatorH with dense domairD(H).

The vanishing of The domainD(H") is the space of functiong such that the

(,—ihD @) — (—ihD i, ) linear form
Lo de(x dy(x ¢— (Y, HeP)
=J dx z//(x)(—iﬁ al ))—(ih d ))¢>(x) . . . +
0 dx dx is continuous for the norm of{. Hence there exists &
L d e H such that
=—iﬁf0 dx g [¥(x)d(x)] (v HP)=(y", ).
e — One defineH =y, A useful result is that the adjoint of
=—ih[¢(L) (L)~ ¢(0)$(0)] (12 any densely defined operator is closed, see Ref. 5, p. 80, Vol.
implies thatP is a symmetric operator if. But Pis nota 1. _ _ N
self-adjoint operator even if its adjoit’=—i#D has the An operator H,D(H)) is said to besymmetridf for all ¢,

same formal expressiobut it acts on a different space of ¥ <D(H) we have
functions Indeed,
(Ho, ) =(o,Hip).

T — ' 2 .
D(PH)={¢y" e LALOLD); If D(H) is dense, it amounts to saying that’( D(H)) is an
no other restriction ony(x)}. extension of H,D(H)).

With (12), one easily sees that the adjoint of the operator 1he operatorH ;’Vith dense don:rlairiD(H) is said to be
P,=—i#D acting on the subspace @f([0,L]) such as self-adjoint if D(H') =D(H) andH'=H. _

. In this section we will assume thafA(D(A)) is densely

#(L)=A¢(0), whereeC, defined, symmetric, and closed and l&'(D(A")) be its

is the operatorP,, where A’ =1/x. As a consequence, a adioint. N
candidate family of self-adjoint extensions of the operator ©One defines the deficiency subspagés by

—ihD, depending on a complex paramete= 1/, i.e., a N.={ypeDA", A'y=z_¢, Imz,. >0},
phasex=¢€'?, §e[0,2r] is: . .
N_={gpeDA", A'y=z_¢, Imz_<O0},

Pyd(x)=—12D p(x), : . :
B L Y (13) vyl'Fh respec.tlve dimensions, ,n_. Thgse are called the de-
D(Py)={¢.¢' € LY[OL]), &(L)=€""¢(0)}. ficiency indices of the operatdx and will be denoted by the
Notice that forf=0, one recovers the usual periodic bound-ordered pair i, ,n_). _ _
ary conditions. The crucial point is thah, (n_) is completely indepen-
Conclusion Given a symmetric differential operator act- dent of the choice o, (z_) as far as it lies in the upper
ing on a given functional space, it is not automatically a(lower) half complex plane. In practice one takes=i\ and
self-adjoint operator and may have many self-adjoint extenz_= —i\ with an arbitrary strictly positive constank
sions. needed for dimensional reasons, and the determination of the
deficiency indices of the operatdr just boils down to the
counting of how many solutions of the equati®y=zy
IV. DEFICIENCY INDICES AND VON NEUMANN'S have finite norm!
THEOREM The following theorem, first discovered by W&in 1910

or second-order differential operators and generalized by

Since what follows is more abstract and makes use Oi/on Neumanht in 1929, is of paramount importance
(maximally reduced mathematical terminology, we would Theorem 1 For an ’operatorA with deficiency indices
like to motivate the reader to such an effort. This section is(n n_) there are three ibilities:

e Lo +,N_ possibilities:
devoted to the concept of “deficiency indices” for an opera-
tor P. The concept itself is very simple: it is an ordered pair(1) If n,=n_=0, thenA is self-adjoint(in fact this is a
of positive integersr, ,n_). Its knowledge, upon use of an necessary and sufficient conditjon
important theorem due to von Neumann, immediately giveg2) If n,=n_=n=1, then A has infinitely many self-
the answer to the difficult question: How many self-adjoint adjoint extensions, parametrized by a unitaryn ma-
extensions does the opera®madmit? trix (i.e., n? real parametefs

Let us begin with some necessary definitions.

. X (3) If n,#n_, thenA has no self-adjoint extension.
Let us consider a Hilbert spadé. An operator A, D(A))

defined ori{ is said to be densely defined if the SUbBEA) The concrete application of this theorem to differential
is dense ir, i.e., that for anyyse H one can find ifD(A)  operators still requires some work because one has to solve
a sequence,, which converges in norm tg. three problems:

324 Am. J. Phys., Vol. 69, No. 3, March 2001 Bonneau, Faraut, and Valent 324



(1) Find a domairD(P) for which the formally self-adjoint C. The operator P on a finite interval
operatorP is symmetric and closed. ) . o
(2) Compute its adjoint T, D(PT)) and determine the de- Since we are working on a finite interval, both. (x)

ficiency indices ofP. =C.e"¥d belong toL2(0,L) and the deficiency indices are
(3) When they do exist, describe the domains of all the self{1, 1.
adjoint extensions. From von Neumann's theorem, we know that the self-

adjoint extensions are parametrized by1), i.e., a phase
A whole body of theory has been built up to solve thesee'?, in agreement with the result of Sec. lIl. Denoting these
problems for differential operators and is given in many text-extensions by ,= (P,D,), they are given by
books(for instance Refs. 5 and)6 )
In Sec. V we describe the results for the simplest case of Dy={#€ Dma{O.L), #(L)=€""y(0)}, 6e[0,27].
the momentum operatd®= —i%D, referring for the proofs (14

to Ref. 5, Vol. 1, pp. 106—111. The reader should be com- \oreover, the spectra are purely discrete. Using the
forted by the simplicity of the determination of the defi- hoyndary conditiori14), the eigenvalues and eigenfunctions
ciency indices. are easily shown to be

V. SELF-ADJOINT EXTENSIONS OF THE

2mh
MOMENTUM OPERATOR Pon(X, 0) === vn(X.0),

Let us apply the previous analysis to the momentum op- 0
erator P=—i#D, in three different “physical” situations: v=nto—, n=0=x1=x2..,
first on the whole real axis and in this case we conclude to a
unique self-adjoint extension, second on the positive semi- 1
axis and in this case there is no self-adjoint extension, and  ¢,(x,6)= —ex;{
third in a finite interval[0, L] in which case there are infi- JL

nitely many self-adjoint extensions, parametrizedUbl), As the phase appears in the eigenfunctions any measure-

.e., a phase. The momentum operator is certainly the siMyent of the momentum of a given system should, in general,
plest differential operator to begin with and it already eXh'b'depend on it. To display this, let us go back to the stale
its all the possibilities described in von Neumann’s theoremagiar 4 transl'ation we are Ie;‘t with the wave function

For each physical situation corresponding to position space

being some intervdla, b], finite or not, the maximal domain 30

on which the operatoP=—i%D has a well-defined action W(x)= \/;X(L—X)-

will be calledD,,,(a,b), and is given in the Appendix. In this

section, we merely apply the previous theorem, postponindis eigenfunction expansion is

(15

X
2|7TVE: (ém ®n)= Omn-

some mathematical details to the Appendix. n=+oo
Let us consider the Hilbert spag¢e=L>(a,b). To use von P(x)=
. . = E, cy(6 X,0),
Neumann’s theorem we have to determine the functions ) n= n(6) dn(X,6)

() given by with coefficients

Y (%) V30 Sin(02)]
my ©

Pl (X)=—iAD . (X)= =i
Cn(0)=— 2727 cog 6/2) —

al >

For dimensional reasons we have introduced the condtant
>0, homogeneous to some length. ) for 6+0, (16)
An easy integration givesy.(x)=C.e"¥9 Then we

and
have to discuss the different intervdls b.
A. The operator P on the whole real axis :@ __ V30 _ _
Co=— " ©Cn 52520 N 1,2,... for #=0.
None of the functiong/.. (x) belongs to the Hilbert space (17)

L?(R) and therefore the deficiency indices &@e 0). Hence N o . ]

we conclude that the operatoP (D,,(R)) is indeed self- So the probgbnlty of finding thze .part|cle with a momentum
adjoint, in agreement with the heuristic considerations giver? 7*//L, being equal tdc,(6)|*, is really 6 dependent. Of
in the standard textbooks on quantum mechanics. MoreovefOurse one would like to have a physical argument which

the spectrum oP on the real axis is continuous, with no 9ives some preferred value éf
eigenvalues. Let us conclude with the following remarks.

(1) The textbooks which do study the momentum operator
in a box (Ref. 1 and Ref. 12, Vol. 2, p. 12p2isually con-
sider (using physical argumentsnly the self-adjoint exten-

Among the functionsy. (x), only ¢, belongs toL?(0,  sion corresponding to the periodic boundary conditioe.,

+ ). We conclude that the deficiency indices &te0) and ~ #=0) which is certainly the simplestbut still arbitrary
therefore, by the von Neumann theorem, tRatas no self- choice. The antiperiodic boundary conditiGre., =) has
adjoint extension. This is a fairly surprising conclusion, sincebeen considered by Capri in Ref. 2.

it implies that the momentum is not a measurable quantity in (2) For a particle in a box, it is often argued that the
that situation! “physical” wave function should vanish on the wabis=0

B. The operator P on the positive semi-axis
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and x=L, ensuring that the position probability vanishesleading to the deficiency indicgg,1), and therefore to infi-
continuously forx<0 and forx=L. One should realize that nitely many self-adjoint extensions parametrizedUbfl ).
the continuity of the measurable quantity The corresponding boundary conditions are

(¢'(0)—i¢(0))=€"*(¢'(0)+i¢(0)), ae[0,2m],

u
Pr(Osxsu)zJ' |p(x)|?2dx, ue[0L]
0 which are equivalent to

is ensured as soon as the integfél #(x)|?dx converges H(0)=\¢'(0), A=—-tanal2), AeRU{x}, (20
and does not require any contintity propertycfx). Spe- see Ref. 5, Vol. 2, pp. 187, 204. The boundary condition

cializing this remark to the eigenfunctions®f,, we observe 4'(0)=0 corresponds ta =o. Physicists use the particular

2 . .
;he?}(a' fﬁ‘éfégythgofﬁygg;\/ﬂﬂn;ontlnUOUSIy a=0 but o tension withh =0; see, for instance, Ref. 7, p. 328 and

Ref. 13, p. 33.
Let us now discuss the energy spectra of a particle con-
PriO<x<u)={ fined in the regionk=0. When the particle enerdy is posi-
] ) ) tive, we can compute the reflection coefficient for this infi-
vanishes continuously, as it should, o+ 0. nitely high barrier in order to compare the predictions given

(3) The existence of normalizable eigenfunctions of thepy the different extensions. The wave function is
momentum operator has an important consequence: The 1242

Heisenberg inequalith XAP=%/2 no longer holds. Indeed, A —ikx ikx _ R
for the stated,(x,6) given in relation(15), one hasAP ¢(x)=Ae +BeT, E 2m’ k=0. 21)
=0 andAX—!./Z. On thg contrary, on the wholg real axis Let us define the reflection amplitude and reflection probabil-
the spectrum is fully continuouso normalizable eigenfunc- ity by
tions), and the momentum probabilities are related to the
Fourier transformed wave function. As the widthsxispace )
and inp space are inversely proportional, the Heisenberg (K)=5. R(k)=r (k).
inequality follows.

(4) If one identifies the variable with the angular variable Imposing the boundary conditiaf20) we get
¢ €[0,27] of polar coordinates, then the angular momentum

1+iNk
isL,=—i#(d/d¢). The previous remark shows that the in- r(k)=— —?)\=>R:1, (22
equality A¢AL,=#/2 can be violated, even by wave func- 1=-ink
tions periodic in the angle. Remarkably enough the physical contéing., R=1!) of all
the extensions is the same: The wall acts as a perfect reflec-
tor.
V1. SELF-ADJOINT EXTENSIONS OF THE This is not quite true for the bound states
HAMILTONIAN ) 5
hi%p
In the same setting as in Sec. V, we consider now the E:_W’ p>0, ¢(x)=Ae %,

Hamiltonian operatorH=—D?. We work in the Hilbert
spacel.?(a,b). The maximal domain in which the operator for which (20) implies (1+Xp)A=0. There will be a bound
D? is defined will again be calle®,,(a,b). To compute the state withp=—1/\ only for \<0 and different frone. Its

deficiency indices we solve energy and normalized wave function are
—D2p(x)=~ikgh(X), ko>0, (18 72 [2 o
E=—-—, A<O, X)=1\/—€e" . 23
and get 2mA? ¢() IN] (23
Kox Ckox (1510) As far as an infinitely high wall is feasible experimentally,
pr=a.e = +h.e” ™ ko= v Ko- (19 the existencdor nonexistenceof this negative energy will
act as a selector of some self-adjoint extensions.
A. The Hamiltonian on the whole real axis If experiment could rule out the negative energy state, or if

one is reluctant to accept negative energies for the Hamil-
tonian, there are still many possible extensions, withO or

=00,

Let us consider a free particle moving in a one-
dimensional space. The Hilbert spaceHs=L?(IR), which
implies ¢.. ¢ H and the deficiency indice®,0. It follows
that on the real axis there isumiqueself-adjoint extension
of the Hamiltonian, with a fully continuous spectrum, in full
agreement with the physicist's understanding of this case. C. The Hamiltonian on a finite interval

This last case corresponds to a particle in a bgrx:
B. The Hamiltonian on the positive semi-axis e[0L]. From a mathematical standpoint the situation is
quite similar to the one already experienced with the momen-
tum operator in Sec. VC, but to our knowledge, it did not
appear before in the literature. So we give some details in the
main text.
¢, =b, e koV2e*ikedv2 One starts from the operatoH(Dy(H)) such that

Let us now consider a free particle in front of an infinitely
high wall for x<0. In the Hilbert spacé{=L2(0,+x), the
solutions to Eq(18) are given by

326 Am. J. Phys., Vol. 69, No. 3, March 2001 Bonneau, Faraut, and Valent 326



Do(H)={¢ e DnafOL) and
#(0)=p(L)=¢'(0)=¢'(L)=0}.
It is densely defined and closed, with adjoint
H'=H, DMH"=Dn(0L).

Since all the solutions of Eq18) belong toL?(0.L), the

deficiency indices are now?2,2) and the self-adjoint exten-

sions are parametrized byl(2) matrix.

same unitary matriXJ. Notice also that it follows that the
points y=0 and =7 are to be identified.
In what follows we will use the Pauli matrices

SRS N S N

and the notation

n- T:anl+ n27'2+ n3T3.

To describe these self-adjoint extensions, it is natural to \We found it convenient to use the coordinates

introduce the sesquilinear form, f@r and s in D,,,,,(0,L),

1
B(¢.9)= 57 (H )= (d,Hp), (24)

which depends only on the boundary valuesdofand .
Specializing togy= ¢ we have

1
B(¢,¢)=5(¢"(L)p(L)—¢(L)¢"(L)

~¢'(0)$(0)+$(0)6'(0)). (25)
The identity
1 1
o7 OV=xy)= 7 (x+iy[*= [x=iy[?), (26)
applied to x=L¢'(L), y=¢(L), and x=Lg¢'(0),

y=¢(0) brings relation(25) to
4LB(¢,¢)=|Ld"(0)—ip(0)|>+|Le" (L) +ip(L)|?

=(mg,m) such that

mo_im3 _mz_iml
M= . . =mpl —im-, (30
m,—im;  my+ims
constrained by
mg+m-m=1emeS°, (31)

Then, starting from the boundary conditio(®8), we ob-
tain the spectra for the Hamiltonian in a box.

(@ E=s?/L%>0:
25 siny coss—m; |=sins[cosy(s?+ 1) —my(s?—1)].
(b) E=0:5s—0 <
2 sing—cosy=2m;+my. (32
(c) E=—r?/L?<0: s=ir &
2r[siny coshr —m,]=sinhr[ —cosy(r2—1)
+mo(r2+1)].

—ILe¢’'(0)+ip(0)|?
Remarks

— ’ i 2

lLé"(L)—is(L)I" (27) (1) The eigenvalue equations are independent of the pa-
The domain of a self-adjoint extension is a maximal sub+rameters n,,m3). As shown in Ref. 14, this follows from
space ofD,,{0L) on which the formB(¢,¢) vanishes their invariance under the transformation
iden'gically. Thgse self-adjoint extensions are parametri_zed by MM’ =g 02N et 0r2/2
a unitary matrixU, and will be denotedd ;= (H,D(U)), in
which D(U) is the space of functiong in Dp,,,(0L) satis-
fying the following boundary conditions:

Let us point out that this invariance is specific of the spectra,

not of the eigenfunctions.

, . , , (2) The existence of negative energies seems rather sur-

( Lé (O)—!¢(O) L' (0)+ ' ¢(O)) prising sinceP?= —D? is a formally positive operator. That
Le'(L)+ig(L) Lé'(L)—ig(L)) this is not generally true can be seen by computing

Notice the arbitrariness in the choice of the ordering of the _ , Y /

: ; . Hp)—(Pp,Pep)= —¢(L L),
coordinated ¢'(0)*i¢(0) andL ¢’ (L) *Fi¢(L). The cru- (¢.H$)~(P4.Pd)=4(0)4'(0)~S(L) (L)
cial observation is that whatever the choice of coordinates is,

the arbitrariness of the self-adjoint extensions remains deﬁ‘ the right-hand side of this relation is positive, the spectrum

scribed by aJ(2) matrix. . " . .
These boundary conditions describe all the self-adjoint ex\—NIII be positive, an issue which depends on the extensign

tensionsH=(H,D(U)) of a particle in a box. Moreover, consideredsee Sec. VIl G.

thanks to the useful theorem, proved in Ref. 6, Vol. 2, p. 90Wh(§?1 m:.rdsr?;et?cs]%erﬁr%‘aﬁagebe. céiss(;frle“d ::ersclrpplre\en
stating that for a differential operator of orderwith defi- ! vl given, 9 e w

ciency indices §,n), all of its self-adjoint extensions have a this is not the case. The detailed analysis of the spectra may

. be found in Ref. 14.
discrete spectrum, we know that all the spectra ofHijeare
fully discrete. Leaving the details to the reader, we only give
the results.
Let us parametrize the unitary matiix as:

U=€eYM, detM=1, =detU=¢e%",

(28)

¢EDu.

VII. RESTRICTIONS FROM PHYSICS ON THE

Ye[0,m7], SELF-ADJOINT EXTENSIONS

(29

whereM is an element oSU(2), i.e., a unitary matrix of
determinant 1. The range gfis restricted tor instead of 2r
because the coupleg/(M) and (/+ 7,— M) give rise to the

In Sec. VI we have described all the possible self-adjoint
extensions of the operatét as they follow from operator
theory. Now we examine which extensions are likely to play
an interesting role according to arguments from physics.
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A. Extensions preserving time reversal As was already the case in the discussion of time reversal
invariance, this argument is wrong since it overlooks the

Let W(x,t) be a solution of the Schdinger equation possibility for the boundary condition®@8) to break parity.
2 2 Note that this point is often forgotten in quantum mechanics
A he oW ) -
ih—(Xt)=— 5= —= (X,t) (33)  textbooks: There, one generally finds that, as soon as the
ot 2m dx potential is symmetric, the solution of the ScHimger equa-

inside the box. The time reversal invariance of this equatioriigzJi,g;ge;irgitgszaer:]?{a't 2hgggjdb§ gs%rléhgf EE?’] E?brl)d?rys
. . . - ; iti ial. X i ut i

means_that it (x.1) ISa squtlon_ of33), thenlIf(x,t)_ IS also the finite square well. The wave functions of its bound states

a solution. If we consider a stationary state of definite energy - cubiect to the boundar conditiofih(x)|2dx<z. As

E with the wave function | y :

this condition is symmetric, the wave functions do have a
CEt definite parity. This is not the case for the diffusion eigen-
V(x,t)= ¢E(X)9XP( 15 functions, for which one has an incoming and reflected wave
. for x— —o, while for x— +o one has only a transmitted
the previous statement implies thag(x) and¢g(x) aretwo  wave. In this second case the symmetry betweand —x is
eigenfunctions of the Hamiltoniadl with the same eigen- broken by the very conditions which characterize a diffusion
value E. One can therefore chooseal eigenfunctions by experiment.
taking the linear combinatiosbg(x) + pe(X). We will therefore define parity preserving extensions of
The shortcoming in this argument is that the boundanthe HamiltoniarH, as the ones for which the eigenfunctions
conditions(28) do not leachecessarilyto real eigenfunctions ‘¢(u) verify
¢e(x). Among all of the self-adjoint extensions of the

Hamiltonian only some subclass will have real eigenfunc- | be(—w)[*=]de(u)[2. 37
t/'g?iz'n;rhese extensions will be said to be time reversal inggre one can sholithat all parity preserving extensions are
To determine all of these extensions, we merely observglven bym;=0 and so correspond to the matrix
that, using the notations , mg —my,—imy
, . U=e'¥ . , el0,m],
e (X)=L"(X) ih(x), mp—imy Mo
. L = . 38

the reality of¢p(x) implies .. (x) = = (X). Taking the com- m(2)+ m§+ m§= 1. 38)
plex conjugate of relatio28) gives

b0 (¢ (0)) — (4.(0) C. Extensions preserving positivity

=U =uUu . (34) o S
(L) ¥4 (L) y—(L) One of the most surprising facts for a physicist is the ap-

Since #, (0) and#_(L) cannot vanish simultaneously, we Péarance of extensions with negative energieme Secs.

VIB and VIC).
conclude to .
net o From a theorem proved in Ref. (heorem 16, Vol. 2, p.
def{l-UU)=0. (35) 44 one knows that only a finite number of negative energies

can appear and that the sum of their multiplicities is at most

Using for U the coordinates given b{80), easy computa- 5 owever, the determination of tHe matrices with no

tions givem,=0 and, correspondingly, the matrix negative eigenvalues involves lengthy graphical discussions
m-—im —im of Eq. (32), which are fairly tedious.
; 0 3 1 . . . .
U=¢e? . . A partial answer to this problem is offered by an interest-
—imy  Mp+img ing theorem due to von Neumaliisee Ref. 5, p. 97 It states
with ¢e[0,7] and m2+mi+mi=1. (36) that if A is densely defined and closed, thafA is self-

adjoint (and obviously positive
Let us apply this result to the operatorP (
=—iD,Dy(P)) defined in Sec. VC, whose adjoint was

The potentiaV(x), vanishing inside the box, is symmetric (P:Pmax(0.L)). It follows that the operator
with respect to the poink=L/2. To make this symmetry (P2,D,(P?)),

explicit we shift the coordinatg to _
Dy(P?)={¢ e Dpnaf0.L) with $(0)=¢(L)=0},

B. Extensions preserving parity

x 1 1 1
Uu=ir—3 Us|~ §,+ Ak will be self-adjoint. It corresponds to the extension with
=1
and define If we take for the operatorR,D,,.(0,L)), with adjoint
V(U)ZV(X), a’E(u):(ﬁE(X)- (P,Do(P))a we are led to

- - 2 2
In the new variablay, the potential is ever’/(—u)=V(u). (P%,Do(PT),

It follows that, for a given energy, the eigenfunctiofis(u) Dy(P?)={¢pe Dol OL) with ¢'(0)=¢'(L)=0},
and ¢e(—u) are solutions of the same differential equation g self-adjoint extension correspondingUc= —1.

End we can choose linear combinations of definite parity As a last example, we may start fror®,(D,), in which
de(u) = Pe(—u). case von Neumann’s theorem gives the self-adjoint extension
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(P21D3( PZ))! X 1 . X
X\ cosnm—— ESlnn’ZT—

Dy(P?)={¢e Dpna(OL) With G(L)=€"¢(0), L L
¢’(L)=e”’¢’(0)} In that (fixed energy infinite limit of the finite well, we
' see that the standard boundary conditief(®)= ¢(L)=0
corresponding to the matrix are recovered. One could have considered a nonsymmetric
~i0 potential well such tha¥(x)=V, for x<0 andV(x)=V;
Uz(ei(, 0 ) 0e[0,27]. for x>L with Vy#V,. Taking the limitsVy—~ and V,

— independently leads to the same conclusions as for the
It can be showH that for this choice of the matri}, the ~ symmetric cas&/,=V, considered here.

operators P2,Dy) and (P,D,) have the same eigenfunc-  This result is hardly a surprise since for fixeg we im-
tions. These extensionsP{, D), are really the squares of pose from the beginning theontinuity of the wave function

the ones of the momentum operatét, D). and its first derivativeatx=0 andx=L. The wave function
in the classically forbidden regioix<0 andx>L) is expo-
D. The infinite well as a limit of the finite one nentially decreasing and is damped to zero in Yhe-«

. . limit. Combined with the continuity ofp,(x) at the points
Let us consider the standard problem of a particle of mass Y Ofpn(X) b

. T ! : . X=0 andx=L this leads tap(0)= ¢(L)=0. (Notice that in
\r;n.n a one-dimensional potential well of widthand depth that limit the continuity of the first derivative of the wave
0.

function is lost)
V(x)=0, xelOL[; V(x)=Vy>0, x&]OL[. (39 In many textbookgRef. 12, Vol. 1, p. 78, Ref. 7, exercise
. . 6.7, p. 396, this limiting process is argued to select the
A standard computation gives the bound state wave func“right” boundary conditions for the self-adjoint extension of
tions the Hamiltonian. In the same spirit, it would be tempting to
2m(Vy—E) consider the semi-axis case as a limit of a step potential. This
x<0: ¢n(x)=dqe’, Pz=—hz—, selects uniquely the self-adjoint extension of the Hamiltonian
such that$(0)=0 (Sec. VIB. However, for any finite
x=L: ¢y(x)=+d,e P*b), (400 height, the momentun®, has a unique self-adjoint exten-
sion, while for an infinite heightP, has no self-adjoint ex-
p . 2mE !
coskx+ —sinkx|, k?=—— tension at allisee Sec. VB
k h This discussion shows that an infinite potential cannot be
with simply described as the limit of a finite one.

O=x=L: ¢,(x)=d,

2 1
dy= \ﬁ :
p VL(d+2/(pL))(1+K? p?)

The positive integen labels the(finite for a given value of

VIIl. CONCLUDING REMARKS

The aim of this article was twofold: first to popularize the
theory of self-adjoint extensions of operators among people

V) family of solutions of the transcendental equation: learning andor) teaching quantum mechanics and second to
2kp give concrete examples for some simple potentials encoun-
tankL)= —— tered in quantum mechanics textbooks.

K*=p Further work is obviously needed. For instance the new
and the+ corresponds to thépposite parity of the station- spectra for a particle in a box could lead to different low
ary staten, and to temperature behaviors of the specific heat, following the

) lines of Refs. 15 and 16. Similarly, the boundary effects

F o - computed in Ref. 17 should be examined anew.

costkL)+ ksm(kL) =1 Certainly the examples considered here are simplified

models devised to describe physical phenomena. This pro-

WhenV, is large, one finds for the spectrum cess of modeling is at the heart of the physicist’'s work. Once

2mV,L? _ some simplified model is chosen and becomes part of the
p==, vo=\ 7z >1 k fixed teaching activity one should explain the subtleties possibly
hidden in it.
kL=nm(1—2Mv,), En=EZ(1—4ly), (41) Our hope is that our analysis will be extended to the dif-

. o ferential operators acting in three-dimensional space which
where theEn’s are the infinite well energy level8), and for  could lead to more realistic physical situations and bring to
the stationary states: light new phenomena: These developments could initiate the
> nar “physics of self—adjoi'nt extensions.” o .

ba(x<0)~ \/:<_ exp—vo|X/L|~0, Moreover, as previously seen, an infinite potential cannot

Ll vo be simply described as the limit of a finite one. This enforces
> N !nterest in the large class of self-adjoint extensions described

dn(x=L)~=* \ﬁ(_) exp—vg(x/L—1)~0, (42)  inthis work: They deserve further study since they are all on

Ll vo an equal footing with respect to the principles of quantum

nar mechanics. _ -
) Last, but not least, let us mention other difficult problems
which are not thoroughly dealt with in the standard teaching

. X
sinnmr—+ | —

¢ (0sx<L)~2/L L

Uo
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of quantum mechanics: the definition of higher powers of

operators(to say nothing of their exponentialand their

PT'=P, D(P™)=Dy(P),

commutators. This item was encountered in Sec. Il, where itvhich shows thatR,Dy(P)) is closed.

was observed that? is not the square of the operatdr By

However, as we checked in Sec. V B, the deficiency indi-

contrast, in Sec. VIIC, we have exhibited a specific extenc€S aré(l, 0) and therefore, by the von Neumann theorem,

sion of P2 which is really the square of the extensiéy
of P.

APPENDIX: SELF-ADJOINT EXTENSIONS OF THE
MOMENTUM OPERATOR

Let us consider the Hilbert spadé=L2(a,b). The maxi-
mal domain on which the operaté#*= —iAD has a well-
defined action has been call&y,,(a,b) in Sec. V. It is the
linear space of functiong(x) constrained by the following:

(1) (x) is absolutely continuod&on [a,b].
(2) ¥(x) andy’(x) belong toL?(a,b).

It is useful to introduce the quantity

1

ho _
=5 [¥(b)d(b)—y(a)¢(a)]. (43

1. The operator P on the whole real axis

The Hilbert space ig{=L?(R) and the maximal domain
of P is Dya(R).
One can prove that for any in this maximal domain, one
has
lim #(x)=0.

X— + oo

Note that this statement would not be true under the sing|

hypothesisy e L2(R). The symmetry o is then, fore,
e Dmax{(R), an obvious consequence @f3). To prove that

(P,DpnadR)) is indeed self-adjoint, one should show that, if

¢ e L?(R) is such that
Vlﬂe ,Dmax(R).

oo 12
<cf [wta]

then ¢ belongs toD,,,(R). But it is easier to check this

| oo

(P,D(P)) has no self-adjoint extension.

3. The operator P on a finite interval
The Hilbert space is no#/=L?(0,L) and we take
P=—i4D,

Do(P)={¢€ DmaO.L), (0)=4(L)=0}.

The symmetry ofP on Dy(P) follows again from relation
(43). Its adjoint is

(PT=P, D(PH=D(0L)).

Let us notice that the adjoint of(D(PT)) is (P,Do(P)),
which implies its closedness.

In Sec. V C, we have obtained the deficiency indiciesl)
and, from von Neumann’s theorem, we know that the self-
adjoint extensions are parametrized by1), i.e., a phase
e'l,

4. Remarks

(1) In all cases we observe that the adjoift’(D(PT))
has for domairD(P") = D,,.«, Which is the largest domain in
‘H in which —iaD is defined. It follows that the actual com-
putation of the deficiency indices is always an easy task.

(2) Let us observe that for symmetric operators one has the
hierarchy

(P,D(P))C(PT,D(PT)),

which means that the adjoint is the “biggest.” When self-

adjoint extensionsR,D,) do exist they must lie in the in-
between, according to the scheme

(P,Do(P))C(P,Dy)C(PT,D(PT)).

(3) For further use, let us point out the useful theorem,
proved in Ref. §Vol. 2, p. 90, stating that for a differential
operator of orden with deficiency indicegn,n) all of its
self-adjoint extensions have a discrete spectrum.

L. E. Ballentine,Quantum MechanicéPrentice—Hall, Englewood Cliffs,
NJ, 1990.

using von Neumann'’s theorem, which was done in Sec. V A.?A. Z. Capri, “Self-adjointness and spontaneously broken symmetry,” Am.

We have proven that the deficiency indices ébe 0) and
concluded that the operatoP (D,,.,,(R)) is theuniqueself-
adjoint extension oD.

2. The operator P on the positive semi-axis

The Hilbert space is{=L2(0,+«) and we take as do-
main

Do(P)={t) & Dma(0,+¢) and (0)=0}. (44)
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limy_ .. ¥(x)=0. Then the symmetry of the operateron
Dy(P) follows again from relatior(43).
The adjoint of @,Dy(P)) is given by

(PT=P, D(PT)=Dp(0,+%)).
The double adjoint is simply
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FARADAY'S LAW

Out of the Boulder Dam come a few dozen rods of copper—Ilong, long, long rods of cdpper
perhaps the thickness of your wrist that go for hundreds of miles in all directions. Small rogds of
copper carrying the power of a giant river. Then the rods are split to make mae ratien to
more transformes...sometimes to great generators which recreate the current in another
form .. .sometimes to engines turning for big industrial pur@ose to more transformers
... then more splitting and spreadin. .until finally the river is spread throughout the whole
city—turning motors, making heat, making light, working gadgetry. The miracle of hot lights from
cold water over 600 miles away—all done with specially arranged pieces of copper and| iron.
Large motors for rolling steel, or tiny motors for a dentist’s drill. Thousands of little whegls,
turning in response to the turning of the big wheel at Boulder Dam. Stop the big wheel, and &ll the
wheels stop; the lights go out. They really are connected.

All this is possible because of carefully designed arrangements of copper and iron—efficiently
created magnetic fietd. . .blocks of rotating iron six feet in diameter whirling with clearances |of
1/16 of an int1 . . . careful proportions of copper for the optimum efficignc . strange shapes al
serving a purpose, like the curve of the dam.

Richard P. Feynman, Robert B. Leighton, and Matthew Safls,Feynman Lectures on Physis®l. Il, The Electro-
magnetic Field Addison-Wesley, Reading, Massachusetts, 196416-9.
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